Keep remember this definitions, questions are made heavily on this concepts ans can be easily solved if definitions are remembered:

(i) Identity function:

The function $f: \mathbf{R} \to \mathbf{R}$ defined by y = f(x) = x for each $x \in \mathbf{R}$ is called the **identity function.** Domain of $f = \mathbf{R}$

Range of $f = \mathbf{R}$

(ii) Constant function: The function $f: \mathbb{R} \to \mathbb{R}$ defined by $y = f(x) = \mathbb{C}$, $x \in \mathbb{R}$, where \mathbb{C} is a constant $\in \mathbb{R}$, is a constant function.

Domain of $f = \mathbf{R}$

Range of $f = \{C\}$

- (iii) **Polynomial function:** A real valued function $f: \mathbf{R} \to \mathbf{R}$ defined by $y = f(x) = a_0 + a_1 x + ... + a_n x^n$, where $n \in \mathbf{N}$, and $a_0, a_1, a_2 ... a_n \in \mathbf{R}$, for each $x \in \mathbf{R}$, is called Polynomial functions.
- (iv) **Rational function:** These are the real functions of the type $\frac{f(x)}{g(x)}$, where

f(x) and g(x) are polynomial functions of x defined in a domain, where $g(x) \neq 0$. For

example $f: \mathbf{R} - \{-2\} \to \mathbf{R}$ defined by $f(x) = \frac{x+1}{x+2}$, $\forall x \in \mathbf{R} - \{-2\}$ is a rational function.

(v) **The Modulus function:** The real function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| = |x|

 $x, x \ge 0$

-x, x < 0

 $\forall x \in \mathbf{R}$ is called the modulus function.

Domain of $f = \mathbf{R}$

Range of $f = \mathbf{R}^+ \cup \{0\}$

(vi) Signum function: The real function

 $f: \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

is called the **signum function**. Domain of $f = \mathbb{R}$, Range of $f = \{1, 0, -1\}$

(vii) **Greatest integer function:** The real function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = [x], x \in \mathbb{R}$ assumes the value of the greatest integer less than or equal to x, is called the **greatest integer function**.

Thus

$$f(x) = [x] = -1 \text{ for } -1 \le x < 0$$

$$f(x) = [x] = 0$$
 for $0 \le x < 1$

$$[x] = 1$$
 for $1 \le x < 2$

$$[x] = 2$$
 for $2 \le x < 3$ and so on